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Abstract. The recent measurements of the electric form factor of the neutron suggest that its shape may
be interpreted as a smooth broad distribution with a bump at Q2 ≈ 0.3 (GeV/c)2 superimposed. As a
consequence the corresponding charge distribution in the Breit frame shows a negative charge extending
as far out as 2 fm. It is natural to identify this charge with the pion cloud. This realisation is then used to
reanalyse all old and new data of the electric and magnetic from factors of the proton and the neutron by
a phenomenological fit and by a fit based on the constituent quark model. It is shown that it is possible
to fit all form factors coherently with both ansaetzen and that they all show the signal of the pion cloud.

PACS. 14.20.Dh Protons and neutrons – 13.40.Gp Electromagnetic form factors – 21.10.Ft Charge dis-
tribution

1 Introduction

Form factors encode unique information about the inter-
nal structure of a scatterer, provided they are determined
with sufficient precision over a sufficiently large range of
momentum transfer. Depending on the interaction, the
Fourier transformation of the form factors gives the spa-
tial distribution of, e.g., mass, charge or magnetisation,
which provides insight into several aspects of the internal
structure of the scatterer:

– the constituents present in the system,
– their interaction,
– and their wave functions.

Therefore, form factors represent very significant tests of
any model of the scatterer.

The nucleon is realized in nature in two species, the
proton with one charge unit and the neutron with no net
charge. While the proton should dominantly be describ-
able by the s-state wave functions of the two up and the
one down constituent quark, these contributions cancel
to first order in the neutron and its electric form factor
should be zero in this approximation. In this simple pic-
ture it is assumed that the quarks are dressed by gluons
and sea quarks forming “constituent quarks” which rep-
resent effective fermions with equal masses of about one
third of the nucleon mass. However, already before the re-
alization of the quark-gluon structure of the nucleon the
perception of a pion cloud around the nucleon was used
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in order to account for the Yukawa interaction between
the nucleons. After early pure quark models of the nu-
cleon, like the MIT bag, the necessity of a pion cloud was
soon realized in order to preserve chiral symmetry at the
nucleon surface, and the “little bag” and “cloudy bag”
models were invented. Based on the fundamental chiral
symmetry of the QCD Lagrangian “chiral dynamics” was
developed identifying the pion as the almost Goldstone
boson of the strong interaction. The “chiral perturbation
theory” based on it has shown through many experimen-
tal tests that indeed the pion is a decisive constituent of
the nucleon besides the elementary quarks and gluons. It
is the purpose of this paper to check whether and how the
pion cloud is reflected in the nucleon form factors.

Because of its zero charge, the contribution of the bare
neutron n0 to the electric form factor of the physical neu-
tron n is small, and the dissociation of a nucleon into its
counterpart (here: the proton), and a charged pion (here: a
negative pion) should emerge most clearly in the neutron’s
electric form factor GEn. We therefore start out in sect. 2
with a discussion of GEn for which now data exist from
polarisation measurements [1–14] having a smaller model
dependence than previous determinations. In sect. 3 we
give an overview of the existing relevant form factor mea-
surements and of our data selection for the present inves-
tigation. In sect. 4 we show that, at the percentage level,
the peculiar structure observed in GEn, namely a kind of
bump around Q2 ≈ 0.2–0.3 (GeV/c)2, is also present in
the other form factors GEp, GMp, and GMn. While this is
discussed in sect. 4 in terms of a purely phenomenological
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ansatz for the form factors, we show in sect. 5 how this
can be viewed in the light of the decomposition of the
nucleon states into a constituent quark core and a polar-
isation term reflecting the contribution of the pion cloud.
The findings are discussed in the concluding sect. 6.

2 The triggering conjecture: the electric form
factor of the neutron GEn

Previous efforts to determine the electric form factor of
the neutron, e.g., from elastic electron scattering on the
deuteron, were hampered by severe model-dependencies
of the results, which therefore were uncertain to about
50%. The emerging results were describable by the so-
called Galster parameterisation, which started out from
the usual dipole fit, which reproduced GEp, GMp, and
GMn reasonably well and which was multiplied by some
appropriate function in order to account for the condition
GEn(Q2 = 0) = 0 required by the vanishing charge of the
neutron. This Galster form is given by

GEn(Q2) =
aG τ

(1 + bG τ)
1

(1 + Q2/m2
D)2

, (1)

where τ = Q2/(2mn)2 and mn = 0.939 GeV/c2 is the
neutron mass. The parameter m2

D was taken as the stan-
dard dipole value m2

D = 0.71 (GeV/c)2 and aG = 1.73
in order to reproduce the measured root mean square ra-
dius of the neutron of 〈r2〉 = −6 d GEn(Q2)/d Q2|Q2=0 =
−0.115 fm2 as determined from the scattering of thermal
neutrons [15]. Thus the only parameter free to be fitted to
the data was bG, and it was determined to bG = 4.59. The
Galster form has no particular theoretical justification and
may rather hide the essential physics.

The collected data for GEn determined recently from
polarisation measurements are depicted in fig. 1. These 15
data points, which are not hampered by model assump-
tions, have been taken with 8 very different experimental
setups, and the data points taken with the same setups
were taken over periods separated by long time intervals.
Also, the setups had very different systematic errors and
corrections due to nuclear binding effects. Therefore, it is
justified to consider the data as statistically independent.
Since the corrections are less certain for the measurements
on 3He than for the loosely bound deuterium, the mea-
surements on the two targets are distinguished in fig. 1 by
markedly different symbols. It is not the aim of this pa-
per, however, to discuss critically these experiments but
just to take this data set seriously and to investigate its
essential features.

It is evident from fig. 1 that the data can be as well
regarded as a broad distribution and a peak around Q2 ≈
0.3 (GeV/c)2 not present in the smoother Galster fit.

In order to get some insight into the consequences of
this alternative form, we have added a term to the form of
eq. (1) which is able to describe an additional peak with
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Fig. 1. The GEn data from polarisation measurements. The
coding for reactions with the deuteron as a neutron target is:
open square [1], filled diamonds [2,3], open diamond [4], open
star [9], open triangle [14], open pentagon [12,13], and filled
triangle [10,11], the measurements with 3He are shown as filled
squares [5–8]. The full curve depicts the fit of the parameters
of eq. (2) to the data, the dash-dotted curve is a variant with
slightly changed parameters as explained in the text, while the
dotted curve is a fit using the Galster form, i.e. eq. (1).

reasonable boundary conditions.

GEn(Q2) =
a Q2

(1 + b Q2 + c Q4)5

+
d Q2

(1 + e Q2)(1 + f Q2)2
.

(2)

The rms radius is now given by the sum of a and d, con-
strained to (a+d)(2mn)2 = aG = 1.73, and we fixed a and
d to a = 0.37 (GeV/c)−2 and d = 0.12 (GeV/c)−2. The
parameters e and f were kept fixed at 0.5 (GeV/c)−2.
Minimising χ2 yielded b = 0.39 (GeV/c)−2 and c =
1.68 (GeV/c)−4. Here we only want to have a parametri-
sation which reproduces the data within the experimen-
tal error bars without associating any particular physical
meaning to the single parameters. In fact, as seen in fig. 1,
this form reproduces the data well. It is not meaningful
to go into any detail of an error analysis, instead we only
show by the example of the dashed-dotted curve that with
the above parametrisation the “peak-region” and the tail
to higher momentum transfers are essentially described in-
dependently of each other. For completeness we just men-
tion that the χ2 of the Galster form is by ∆χ2 = 4.8 bigger
than that of the other two.

As is well known [16], though sometimes questioned
(for a discussion of this problem see ref. [17]), the Fourier
transform of the electric and magnetic Sachs form fac-
tors GE(Q2) and GM (Q2) represent the charge and mag-
netic density distribution in the Breit frame, where the
energy transfer ω = 0 and the three-momentum transfer
|qBreit| = Q; we denote these distributions by ρ(r), which
thus is given by

ρ(r) =
4π

(2π)3

∫ ∞

0

G(Q)
sin(Qr)

Qr
Q2dQ . (3)
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Fig. 2. The differential radial charge distribution of the neu-
tron in the Breit frame as derived by a Fourier transform. The
coding of the lines is that of fig. 1.

Refinements to this relation are discussed in detail in
ref. [18] where it is also pointed out that corrections can-
not be defined without model assumptions. Since we are
interested in the gross features of the measured form fac-
tors and the spatial distributions, we base our further dis-
cussion on eq. (3). A more refined approach may result in
some compression of the resulting distributions in r-space,
which should not alter their salient features and which are
therefore left out of consideration in this paper.

Figure 2 shows the charge distribution in the neutron,
ρEn, calculated via eq. (3) with above given fits to GEn.
We have plotted r2ρEn(r) which represents the charge in
a spherical shell at radius r. The charge distribution of
the Galster fit shows the well-known “aperiodic” shape
with a positive bump in the interior and a negative bump
at the outside of the neutron. This characteristic feature
also results from an ansatz for the form factor with the
superposition of two appropriate dipole forms, to which
the Galster parameterisation is a good approximation.

The fit with eq. (2), however, which accounts for the
bump in GEn at Q2 ≈ 0.3 (GeV/c)2, results in an oscilla-
tory behaviour of ρEn(r) (see fig. 2). Though the oscilla-
tory behaviour depends on the particular fitting form we
shall show that it is the bump which shifts more charge
to the outside than does the Galster fit. Since this outer
region should be dominated by the pion cloud, the corre-
sponding contribution should show up as a general feature
also in the other form factors, where, however, a form fac-
tor bump of the same order of magnitude can only be
expected to be a few-percent contribution.

With this in mind, we reconsider all four nucleon form
factors in the following.

3 The data base

Table 1 gives an overview of the data which we have taken
into consideration together with the Q2-ranges which they
cover.

For GEp we have omitted in the final analysis the data
by Andivahis et al. [19]. In the Q2-range of these data,

Table 1. Overview of data taken into consideration (Q2 in
(GeV/c)2). The data left out in the final analysis are put in
parentheses. The reactions are as indicated; d(e, e′) refers to
quasi elastic scattering.

Measurement Q2-range Reference

GEp

p(e, e′) 0.01–0.05 Simon et al. [20]
0.04–1.75 Price et al. [21]
0.39–1.95 Berger et al. [22]

(1.75–8.83) Andivahis et al. [19]
d(e, e′p) 0.27–1.76 Hanson et al. [23]
p(�e, e′�p ) 0.37–0.44 Pospischil et al. [24]

0.38–0.50 Milbrath et al. [25]
0.40 Dieterich et al. [26]

0.49–3.47 Jones et al. [27]
3.50–5.54 Gayou et al. [28]

GMp

p(e, e′) 0.02–0.15 Hoehler et al. [29]
0.16–0.86 Janssens et al. [30]
0.39–1.75 Berger et al. [22]
0.67–3.00 Bartel et al. [31]
1.00–3.00 Walker et al. [32]
1.50–3.75 Litt et al. [33]
1.75–7.00 Andivahis et al. [19]
2.86–31.2 Sill et al. [34]

d(e, e′p) 0.27–1.76 Hanson et al. [23]

GEn

d(�e, e′�n )p 0.15 Herberg et al. [3]
0.26 Eden et al. [1]

0.30, 0.58 Seimetz et al. [10]
0.34 Ostrick et al. [2]

0.49–1.47 Madey et al. [12,13]
0.76 Glazier et al. [11]
1.00 Day et al.[14]

�d (�e, e′n)p 0.21 Passchier et al. [4]
0.50 Zhu et al. [9]−−→

3He(�e, e′n) 0.40 Becker et al. [6–8]
0.67 Rohe et al. [5,8]

d(e, e′) (0.27–1.76) Hanson et al. [23]
(1.75–4.00) Lung et al. [35]

GMn

d(e, e′n)p 0.07–0.89 Kubon et al. [36]
0.10–0.20 Xu et al. [37]

0.11 Anklin et al. [38]
(0.11–0.26) Markowitz et al. [39]
(0.13–0.61) Bruins et al. [40]
0.24–0.78 Anklin et al. [41]

d(e, e′p) (0.27–1.76) Hanson et al. [23]
d(e, e′) 1.75–4.00 Lung et al. [35]

2.50–10.0 Rock et al. [42]

GEp � GMp, thus its determination via a Rosenbluth sep-
aration is quite uncertain. In fact these data are clearly
incompatible with the new results from polarisation mea-
surements in which not the sum of G2

Ep + τ ·G2
Mp is mea-

sured but the ratio GEp/GMp. It is straightforward to
determine GEp from this ratio if one takes the prevailing
GMp as known from measurement.
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For GMp we took into account the same data as
Kelly [18], i.e. the data by Hoehler et al. [29] up to
Q2 = 0.15 (GeV/c)2 and those revised and compiled re-
cently by Brash et al. [43]. In addition we also used the
data by Hanson et al. [23].

For GEn we have only taken into account the data
from polarisation measurements. The measurement in [35,
23] give only G2

En, thus the sign of GEn remains unde-
termined, and the errors are so large that the data can
essentially be regarded as upper limits only; we did not
take them into account in the fits. Other determinations
of GEn were very uncertain due to the model dependency
of the extraction of GEn from the measured cross-sections,
and we did not take them into consideration.

For GMn the data by Markowitz et al. [39] and by Bru-
ins et al. [40] were omitted in the analysis as was already
done in Kubon et al. [36]. (Arguments are given in [36]
and [44]. See, however, also [45].) Also, the data by Han-
son et al. [23] are omitted since they deviate substantially
from the trend of the more recent data measured with the
detection of the neutron in coincidence1.

4 A phenomenological description of the
nucleon form factors

4.1 The phenomenological ansatz

What we are particularly interested in is the existence of
a small bump on top of a large “smooth main part”. This
raises the question after what is “smooth main part” and
what is “bump”. After the investigation of several param-
eterisations we decided to keep close to what one is used
to in the description of the nucleon form factors, namely
the dipole form. In fact it is fascinating that the three
form factors GEp, GMp, and GMn are describable to quite
a precision by the dipole form with the one parameter mD

given above as it has entered into the text books, e.g. [16,
47]. Such good description could make one believe that
there is some physical meaning in the parameter mD. In
fact there is none.

Looking at the form factors more closely, however, the
precision with which the measurements are reproduced
by this simple parameterisation is limited. While this has
been realized on the percentage level already in the high-
precision measurement of GEp at low Q2 by Simon et
al. [20], this became completely obvious at high Q2 by
the polarisation measurements by Jones et al. [27].

Purely phenomenologically, we describe the smooth
part of the form factors, Gs(Q2), by the dipole form. In

1 After these investigations were finished a new measurement
of GMn was published [46] and came to our attention. Since

the GMn values were derived from the reaction
−−→
3He(�e, e′n) they

carry a large systematic error due to the correction of the bind-
ing of the neutron in 3He. They lie even below the values of
ref. [41] and support the same trend. We repeated our fits with
these values taking the error into account and found that the
results presented in the following are not changed.

order to be somewhat flexible, however, we took into ac-
count the superposition of two dipoles:

Gs(Q2) =
a10

(1 + Q2/a11)2
+

a20

(1 + Q2/a21)2
. (4)

To account for a possible bump on top of the smooth form
factor we now take a parameterisation which is easy to
handle and the parameters of which give direct insight into
the characteristic features of such a bump, namely its am-
plitude, position and width, ab, Qb, and σb, respectively.
A quite natural choice would be a Gaussian positioned at
Qb. For Qb �= 0, however, such Gaussian contains uneven
powers in Q, which is not allowed for a function repre-
senting a form factor. This shortcoming can be healed by
superimposing two Gaussians as introduced in r-space by
Sick for his ansatz for a model-independent analysis of nu-
clear charge distributions [48]. We thus parameterise the
bump as

Gb(Q2) = e
− 1

2 (Q−Qb

σb
)2 + e

− 1
2 (Q+Qb

σb
)2

. (5)

In order to keep as close as possible to the accus-
tomed description of the form factors, we attribute the
full normalisation to the dominating smooth part, i.e.
GN (Q2 = 0) = Gs(Q2 = 0), i.e. in this ansatz the smooth
part accounts for the full charge or magnetic moment, re-
spectively. To make sure, that, independent of the fitted
values for its parameters, Gb does not interfere with this
normalisation, we multiply it by Q2. We thus parameterise
the nucleon form factors by the ansatz

GN (Q2) = Gs(Q2) + ab · Q2Gb(Q2) , (6)

where ab is essentially the amplitude of the bump.

4.2 Fit of the form factors with the phenomenological
ansatz

The parameters from the fits of above phenomenological
ansatz to the form factors GEp, GMp, GEn, and GMn are
compiled in table 2. The given errors are the standard
errors from the fit procedure, which also account for cor-
relations, therefore the parameters cannot just be varied
independently within these margins.

The main purpose of these fits is to allow a coherent
view on the measured form factors in order to reveal cer-
tain common features. Therefore, we do not go into details
of these fits. However, a large number of fits with other an-
alytical forms were also tried. They all point to the same
feature of a structure with a width of ≈ 0.2 (GeV/c)2.

The final fitting results given here have been performed
with fixed normalisation which was guaranteed by setting
a20 = 1−a10 and fitting only a10 to the data (a20 = −a10

for GEn). Fits with both a10 and a20 as free parameters
did not improve the fits by more than ∆χ2 = −2; this
means that there is no hint for normalisation problems in
the data.

Let us first look at the “standard form factors” GEp,
GMp, and GMn, which we refer to as Gstd

N . For these, one
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Table 2. Parameters from the fit of the phenomenological ansatz eq. (6) to the electric and magnetic nuclear form factors. In
the usual way the errors on the parameters are given in brackets; if no decimal point is given they refer to the last given digits
of the parameter. For GMp, fit 1 uses only the data up to 2 GeV/c, thus it is more comparable to the fits to GEp and GMn

than fit 2, where all data up to 6 GeV/c are taken into account.

Gs Gb

Form factor a10 a11 a20 a21 ab Qb σb Nd.o.f. χ2
d.o.f. χ2

total

(GeV/c)2 (GeV/c)2 (GeV/c)−2 (GeV/c) (GeV/c)

GEp 1.041(40) 0.765(66) −0.041(-) 6.2(5.0) −0.23(18) 0.07(88) 0.27(29) 64 0.933 59.71

GMp/µp

1 1.002(7) 0.749(6) −0.002(-) 6.0(3.4) −0.13(3) 0.35(7) 0.21(3) 60 0.861 51.66
2 1.003(7) 0.753(2) −0.003(-) 16.9(6) −0.15(6) 0.33(7) 0.23(3) 75 0.876 65.7

GEn 1.04(10.7) 1.73(-) −1.04(-) 1.54(1.94) 0.23(15) 0.29(17) 0.20(9) 10 0.861 8.61

GMn/µn 1.012(6) 0.770(10) −0.012(-) 6.8(3.0) −0.28(3) 0.33(3) 0.14(2) 14 0.579 8.11

dipole (the first) accounts for the overwhelming part of
the strength at low q, i.e. it carries most of the charge
or magnetisation, respectively. The slope constants of all
three Gstd

N essentially agree within the errors. In fact,
the mean value 0.76 (GeV/c)−2 is near to the value
m2

D = 0.71 (GeV/c)−2 of the standard dipole fit, however
the deviation is significant. In fact one cannot expect equal
parameters since the standard dipole fit deviates system-
atically from the data (cf. fig. 4) and thus also from our fits
which reproduce the data within the experimental errors.

It is interesting to note, that also the slope param-
eters a21 of the second dipole form are very similar for
all three Gstd

N (cf. fit 1 for GMp in table 2). This term
(with negative amplitude) accounts for the fact that the
measurements fall below the dipole fit at larger Q2. While
this became obvious for GEp at larger Q2 from polarisa-
tion measurements, a systematic deviation from the dipole
fit was already observed by Simon et al. [20] at low Q2,
though only at the percent level. It may now be somewhat
surprising that the slope parameters a21 are so similar for
all three Gstd

N . In fact, if one accounts in GMp also for the
high-Q region (fit 2), this is no longer the case.

A direct interpretation of the bump structure in terms
of the parameters ab, Qb, and σb is obscured by the mul-
tiplication of the Gaussian with Q2. Therefore, for a dis-
cussion of this structure we refer to its graphical represen-
tation in fig. 5.

First, fig. 3 shows the overall behaviour of the nucleon
form factors and the quality of the overall agreement with
the fits. For GEp the relatively large (negative) amplitude
a20 of the second dipole results in a zero in the form factor
around 3 GeV/c. This makes this form factor look very dif-
ferently from GMp and GMn, though, in fact, this is only
due to the larger amplitude of the dipole with negative
sign and not the form of the single contributions. At the
highest measured momentum transfers above 3 GeV/c the
data for GMp are not so well described by this phenomeno-

logical fit. Though, from χ2, the overall description of the
data is excellent, there might be some systematic deviation
at high Q2 pointing to insufficient flexibility of the ansatz.

In order to make the deviation of the measurements
(and thus also of our fits) from the standard dipole fit more
obvious, we show in fig. 4 the ratio of the three standard
form factors (data and fit) to the standard dipole fit (see
second factor of eq. (1)).

In fig. 5 we demonstrate the “bump”-contribution to
the form factors by the subtraction of the fitted smooth
part, i.e. the two dipoles. In order to emphasise the
low-Q2 region where this phenomenon occurs, we have
plotted this difference as function of log(Q2). It is ob-
vious from this graph that the bump structure around
Q2 = 0.2 − 0.3 (GeV/c)2, as discussed in section 2 for
GEn, is a common feature of all four form factors. It is
striking how similar the contribution from the bump is in
all four form factors. While it is only a small contribu-
tion to Gstd

N , it dominates GEn at low momentum transfer
where the contribution from the two dipoles, though both
separately are large, cancel.

As also discussed in sect. 2, such bump structure in
Q-space contributes a certain ∆ρb in r-space, the detailed
structure of which, however, is not easy to foresee. The
net charge in ∆ρb under discussion here is zero by con-
struction, therefore it must show some oscillation. The
wavelength λρ of this oscillation is given by the position
of the bump in Q-space, Qb, as λρ = 2π�/Qb. The damp-
ing of the oscillation is related to the relative width of the
bump. From Qb ≈ 0.45 GeV/c = 2.3 fm−1 there thus re-
sults the wavelength λρ = 2.7 fm in agreement with the
oscillation shown in fig. 2. We conclude that an oscillation
with such wavelength results as a common feature from
all four form factors and is not just a peculiarity of GEn.

We demonstrate this by showing in the following sub-
section the Fourier transforms of the four form factors.
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Fig. 3. The measured nucleon form factors and their descrip-
tion by the phenomenological fits. The full line represents the
the sum of the two dipoles and the Gaussian, which are also
shown separately, the second dipole form being multiplied by
−1 in order to make it positive for this logarithmic plot. For
GEn we also show the sum of the two dipoles separately.
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Fig. 4. The measured nucleon form factors and their phe-
nomenological description divided by the standard dipole form
factor. The full line represents the full fit, while the broken
line is only the “smooth main part”, i.e. the sum of the two
dipoles.

4.3 The Fourier transform of the fits of the form
factors

As mentioned above, the Fourier transforms of the Sachs
form factors can be regarded as the charge and magnetic
distribution, respectively, in the Breit frame. With this in
mind, we show in this subsection the Fourier transforms
of the form factors which, for brevity, we all denote by
“charge” ρ.
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Fig. 6. ρ(r) of the nucleons in the Breit frame. The units of
ρ(r) are fm−3. The distributions are normalised to 1 for Gstd

N

and to 0 for GEn.
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Figure 6 shows ρ(r) resulting from the two dipole con-
tributions, the bump and their sum. For reference, the
transform of the standard dipole is also shown. In this
representation, for all three Gstd

N ρ(r) is very close to that
of the standard dipole form for r > 0.2 fm. This is true
for GMp also down to the centre of the nucleon, where we
see deviations from the dipole form for GEp and GMn. It
has to be admitted, however, that in the latter cases the
measurements do not extend to as high Q2 as in the for-
mer, thus the distribution in r-space is less well fixed at
small r. Actually, there is only a tiny fraction of the total
charge contained in this inner part. The contribution from
the bump is not visible in this plot.

The quantity ρ(r) · r2 gives directly the weight of the
charge contained in a spherical shell at distance r, thus
the area under the curve gives the total charge contained
in the respective term. This quantity is shown in fig. 7.
Here, the contribution from the bump in the form factor
is clearly visible as oscillation (net charge = 0). Its phase
in r-space is such that it puts additional strength on the
dipole form in the outer region with maxima between 1.5
(GMp) and 2.0 fm (GEp, GMn). The second dipole gives
small and tiny contributions in the interior of ρ(GEp) and
ρ(GMn), respectively, and is not visible in ρ(GMp). For
GEn the oscillation gives the total ρ(r) in the outer region
centred around 1.7 fm, while the inner part is dominated
by the difference of the two dipoles. In between there is
a cancellation between these two terms, a feature already
visible in the analysis in sect. 2. We come back to this
point below.

In order to emphasise the outer region of the nucleons
even more, fig. 8 shows |ρ(r)| · r2 but now in a logarith-
mic scale. In this plot the sign information gets lost and
one has to look at fig. 7 to keep track of the sign. The
sign of the first lobe in the contribution ∆ρb(r) from the
bump in the form factor, this means abQ

2Gb(Q), is that
of ∆ρb(r = 0). Since ∆ρb(r = 0) ∝ ab

∫
Gb(Q)Q2dQ, the

sign of ∆ρb(r = 0) and thus the sign of the first lobe in
∆ρb(r) is given by the sign of the amplitude ab of the
bump (Gb(Q) > 0). - Here again, we do not want to go
into details. We will see in the next section, that one ±
oscillation on top of a smooth distribution can be inter-
preted as dissociation of the nucleon in its counterpart and
a pion cloud. The further oscillations visible in the loga-
rithmic plot in fig. 8 are compatible with the data, but
certainly must be regarded as depending on the special
ansatz eq. (6).

5 A coherent description of the four form
factors by a physically motivated ansatz

5.1 The ansatz

Inspired by the conspicuous graphical representation of
the form factors, which reveal a bump on top of a smooth
trend, we make the ansatz of describing the nucleons
by the sum of a bare nucleon plus a polarisation part
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Fig. 7. ρ(r) · r2 in the Breit frame.
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according to

p = ap · p0 + bp · (n0 + π+)

= p0 + bp · (−p0 + n0 + π+) , (7)

n = an · n0 + bn · (p0 + π−)
= n0 + bn · (+p0 − n0 + π−) , (8)

where we have made use of the normalisation condition
aN +bN = 1 for N = p, n. Neutral pions are not taken into
consideration since, to first order, they do not contribute
to elastic electron scattering.

The form factors can thus be written as

Gp = G0
p + bp · (−G0

p + G0
n + Gπ+

) = G0
p + Gpol

p , (9)

Gn = G0
n + bn · (+G0

p − G0
n + Gπ−

) = G0
n + Gpol

n , (10)

where we use the transparent nomenclature of the form
factor of the polarisation

Gpol
N = bN · (G0

N̄ − G0
N + Gπ), (11)

where N̄ denotes the neutron (proton) and π the π+ (π−)
when N is the proton (neutron).

Furthermore, we think of the bare nucleons in terms
of their constituent-quark content, i.e. p = (uud) and n =
(udd). We denote the form factor of the distribution of
quark q in the nucleon N by GqN . We are thus dealing
with the ingredients Gup, Gdp, Gun, and Gdn for which
we take the dipole form

GqN =
aqN
0

(1 + Q2/aqN
1 )2

. (12)

The pion has intrinsic parity −1 which has to be com-
pensated by its spatial wave function; therefore, to lowest
order, it should be in an (l = 1)-state. Taking as sim-
ple ansatz the wave function of a harmonic oscillator, the
related form factor is given by

Gπ = aπ
0 · (1 − 1

6
(Q/aπ

1 )2)e−
1
4 (Q/aπ

1 )2 . (13)

The form factor of the pion cloud should be the convolu-
tion of this form factor from the wave function with that
of the intrinsic distribution of the pion, the size of which
is certainly not negligible compared to that of the nucleon
and thus to the extension of the pion cloud. Convolution
in r-space results in a multiplication in Q-space. Assuming
a Gaussian for the intrinsic pion distribution, this results
in a multiplication of eq. (13) by a Gaussian, thus by a
change of the parameter aπ

1 in the exponential. This does
not change the form of Gπ, it would only decouple the pa-
rameter aπ

1 in the exponential from that in the brackets.
We will, however, not make use of this additional degree
of freedom.

For the electric form factors, we have aπ+

0,E = −aπ−
0,E = 1.

For the magnetic form factor, the situation is not that
clear due to the degrees of freedom of the vector cou-
pling of the magnetic moments. Furthermore, it is not
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Table 3. Parameters from the fits of the model ansatz to the electric nucleon form factors. For the error convention see caption
of table 2. The different fits observe more or less the isospin symmetry (see text).

G0
p G0

n Gπ+

Form factor aup
1 adp

1 aun
1 adn

1 bp,n aπ+/−
1 Nd.o.f. χ2

d.o.f. χ2
total

(GeV/c)2 (GeV/c)2 (GeV/c)2 (GeV/c)2 GeV/c

GEp

1 1.000(100) 2.03(72) 57.(1200.) 78.(2500.) 0.10(4) 0.198(12) 64 0.932 59.6
2 1.008(20) 2.54(16) 2.54(-) 1.008(-) 0.11(1) 0.203(6) 66 0.926 61.1
3 1.051(20) 2.391(14) 2.53(-) 2.22(-) 0.118(13) 0.204(6) 66 0.928 61.2

GEn

1 1.008(-) 2.54(-) 2.54(-) 1.008(-) 0.11(-) 0.203(-) – – –
2 1.008(-) 2.54(-) 6.2(6.4) 5.3(5.1) 0.086(10) 0.203(-) 12 0.807 9.7
3 1.008(-) 2.54(-) 2.54(-) 2.22(2) 0.074(5) 0.203(-) 13 0.818 10.6

clear what magnetic moment should be related with the
pion cloud since we are not dealing with a free pion.

Strict isospin invariance would imply

Gup ∼ Gdn ,

Gdp ∼ Gun , (14)

Gπ+ ∼ −Gπ−
.

We will check, whether the measured form factors can be
described under this condition.

5.2 The electric form factors

Since G0
En(0) = 0 due to the vanishing charge of the neu-

tron, from eq. (9) we have

GEp(0) = [(1 − bp) · G0
Ep(0) + bp · Gπ+(0)] = 1 . (15)

We note, that the charge bp·1 of the pion cloud, which goes
at the expense of the bare proton’s charge, contributes to
the proton electric form factor at Q2 = 0. Therefore, the
peak on top of a smooth part of the form factors, which we
have revealed in sect. 4, cannot be attributed directly to
the pion. In fact, to the contrary, according to eq. (13) the
contribution from the pion cloud should be concentrated
around Q2 = 0 since the pion cloud is expected to extend
further out than the bare proton.

According to our model, we evaluate the electric form
factor of the proton with the ansatz

GEp = (Gup
E + Gdp

E ) (16)

+ bp · (−(Gup
E + Gdp

E ) + (Gun
E + Gdn

E ) + Gπ+

E )

with GqN and Gπ parametrised by eqs. (12) and (13),
respectively.

The weights aqN
0 for the electric quark form factors

are given by the quark charges, i.e. aup
0,E = +4/3, aun

0,E =
+2/3 and adp

0,E = −1/3, adn
0,E = −2/3, and that of the

pion is aπ+

0 = +1. This ansatz conserves automatically the

normalisation. We are thus left with the free parameters of
the quark distributions, aup

1 , adp
1 , aun

1 , adn
1 , the amplitude

bp of the polarisation term and the oscillator parameter for
the pion, aπ+

1 , i.e. we have one free parameter less than
in the phenomenological model with two dipoles and the
bump discussed in sect. 4.

In a first fit we take these six parameters as free. The
resulting values are given in table 3 as fit 1. It is not too
surprising that the n0-parameters remain completely un-
determined. The data are described by this ansatz as well
as with the phenomenological ansatz with seven param-
eters (χ2 = 59.6 here compared to 59.7 there). We note
that the pion parameters in this model are better deter-
mined than the bump parameters in the phenomenological
ansatz. Further, the large values of aqn

1 would yield an ex-
tremely sharp localisation of the quarks in the neutron,
most likely an unrealistic scenario. The large error on the
neutron parameters, however, leave room for applying fur-
ther model restrictions. In fit 2 we subject the quark dis-
tributions to complete isospin invariance, i.e. we demand
aun
1 = adp

1 and adn
1 = aup

1 , there are thus only 4 free pa-
rameters left. The proton parameters vary essentially only
within their errors, the same is true for the pion-cloud pa-
rameters. The total χ2 increases by the omission of the two
parameters by only 1.5 which is an insignificant increase.

The fit 2 is compared in fig. 9 to the data. Here, we
also show the single contributions of the model. In the log-
arithmic plot (upper panel) their signs get lost, therefore,
in order to discuss the interplay between the single contri-
butions to GEp, we have plotted in the lower panel these
contributions on a linear scale. The dominating G0

p from
the bare proton p0 has a zero around 2.2 GeV/c due to
the inference between the positive Gup and the negative
Gdp, the latter being suppressed by a factor 4, but extend-
ing out much further (adp

1 > aup
1 ; these contributions are

not shown separately). This minimum, however, is shad-
owed by the polarisation term Gpol

p . At Q2 = 0, −bpG
0
p

and bpG
π+

cancel, while G0
n itself is zero there (see lower

panel of fig. 9). With increasing Q, the negative contribu-
tion of −bpG

0
p prevails, Gpol

p thus becomes negative, until
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Fig. 9. GEp: Fit 2 (cf. table 3) compared to the measure-
ments. Upper panel: Full scale comparison. Lower panel: The
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interplay of the different contributions to Gpol and, finally, the
making up of GEp as the sum of G0

p and Gpol (note the ex-
tended x-scale in the lower panel). The form factors of p0 +π+
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it is balanced by the positive contribution from the neu-
tron, bpG

0
n. Around Q ≈ 0.4 GeV/c Gpol

p has a minimum,
around Q ≈ 1.0 GeV/c it passes through zero and becomes
positive at large Q where the contribution bpG

0
n prevails.

Finally there results a zero in GEp around 3.3 GeV/c due
to the interference of the positive polarisation (from n0)
and the negative lobe of G0

p from its d-quark contribution.
The data are certainly not sufficient to fix these numbers
precisely; nevertheless they are useful as a guidance for
what might go on physically in this Q2-range. The deter-
mination of the minimum in GEp by experiment is highly
desirable.

Comparison with the evaluation in terms of the purely
phenomenological model in sect. 4 reveals that the bump
structure there has a different meaning than that of the
polarisation term resulting here from the evaluation in
terms of the quark model. It is clear, that this is due to
the definition of what is “bump” and what is “smooth”.
The interpretation of this model, however, makes clear,
that the low-Q2 side of the bump results mainly from
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Fig. 10. The contribution bpGπ+

E from the pion cloud to GEp

(fit 2). For comparison the data points show the measurements
minus [(1 − bp) · G0

Ep + bp · G0
En].

the interplay of the form factor from the π+ with the
reduction in p0.

In fig. 10 we show on a logarithmic Q2-scale the contri-
bution of the pion cloud for fit 2. This scale emphasises the
low-Q2 part, where the pion-cloud contribution is concen-
trated. It it obvious that the data are not precise enough
to fix the zero in Gπ+

E . A good determination of this zero,
however, would be a prerequisite to distinguish between
the parameter aπ

1 in the exponential and in the brackets,
thus to see the signature of the finite size of the pion.

We have seen that in the fits to GEp the parameters
of the contribution from G0

n remain practically undeter-
mined. We now want to see what we learn about them
from the electric form factor of the neutron, for which the
corresponding expression is

GEn = (Gun
E + Gdn

E ) (17)

+ bn · ((Gup
E + Gdp

E ) − (Gun
E + Gdn

E ) + Gπ−
E ) .

As in the case of the proton, this ansatz conserves au-
tomatically the normalisation (here: to 0). Respecting
strict isospin invariance, i.e. aun

1 = adp
1 , adn

1 = aup
1 , and

Gπ+

E = Gπ−
E we can calculate GEn from eq. (17). In the

upper panel of fig. 11 we compare this calculation to the
measured data, using the parameters of fit 2 for GEp.
First, it is remarkable, that and how well the polarisa-
tion term, directly calculated with the parameters from
the fit to GEp, reproduces the bump structure of GEn at
low Q! However, second, the contribution from the bare
neutron alone, while being reasonably well positioned in
Q, overestimates drastically the total measured GEn,

There are two ways to reduce the amplitude of the su-
perposition of two dipoles with equal amplitudes of differ-
ent sign. The first way is to just reduce the common ampli-
tude, here one would need a reduction of roughly a factor
of 6. The amplitude being given by the charge of the one up
and the two down quarks as +2/3 and −2/3, respectively,
such reduction would mean to leave the grounds of the
present model, namely the building up of the nucleons by
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Fig. 11. GEn: Calculation with eq. (17) compared to the mea-
surements. Upper panel: Calculation obeying strict isospin in-
variance. Middle panel: aun

1 , adn
1 , and bp fitted to the GEn-data

(see fit 2 to GEn in table 3). Lower panel: adn
1 and bn fitted to

the data (see fit 3 to GEn in table 3).

constituent quarks. Therefore, we prefer the second way
which requests letting the two parameters aun

1 and adn
1

approach each other. In the fit we let the routine search
for an appropriate parameter choice by varying only aun

1 ,
adn
1 , and bp. In fact, the program finds a perfect fit to the

measured GEn with a χ2 per d.o.f. of 0.81 (fit 2). While
fit 2 reduces the polarisation term by only some 20 %, the
dipole parameters are increased by a factor of 2.5 and 5,

respectively, which corresponds to making the distribu-
tion in r-space very narrow. Furthermore, aun

1 /adn
1 = 1.2,

whereas adp
1 /aup

1 = 2.5, i.e. the up- and down-quark distri-
butions are much more similar in n0 than in p0. This find-
ing, however, may not be too surprising since at the small
distances of fractions of 1 fm the difference in the Coulomb
interaction in p0 and n0 might make strict isospin symme-
try questionable. In other words, the net positive charge
of the two up constituent quarks will repel them so they
reside more outside than the quarks with the net zero
charge in the neutron. One should not mix this up with
the opposite behaviour of the current quark distribution
as derived from deep inelastic scattering. - The result of
this fit is shown in the middle panel of fig. 11.

In a last step (fit 3) we examine the significance of the
fit of aun

1 and adn
1 by setting aun

1 equal to adp
1 from fit

2 of GEp and keeping this fixed. We thus allow only adn
1

and bn to vary. While the resulting bn differs by less than
one standard deviation from its value in fit 2, adn

1 just
follows aun

1 in order to keep the difference small, which,
as said above, is necessary to keep the GEn small in the
high-Q region. As expected from the large uncertainties in
aun
1 and adn

1 in fit 2, χ2 only varies by 0.9 with this quite
drastic variation in aun

1 . The result of this fit is shown in
the lower panel of fig. 11.

Data at higher momentum transfers are needed to fur-
ther constrain the low-distance behaviour of the neutron
form factor.

We have checked the significance of the bump-
structure in GEn by fitting the data with only a smooth
ansatz consisting of two dipoles with equal but opposite
amplitudes, which is equivalent to the ansatz eq. (1). With
this parameterisation we get χ2

total = 11.1 (d.o.f. = 12),
i.e. an increase by 1.4 compared to fit 2 in table 3. Thus,
for a significant determination of the bump more precise
data at low Q2 are needed as well as data extending to
higher Q2.

Finally, we check whether the fit of the proton’s electric
form factor is deteriorated when the neutron parameters
are kept fixed to the values determined now from the fit to
the neutron data. The resulting parameters are shown as
fit 3 of GEp in table 3. In fact the change in the parameters
and thus also in the graphical representation of the form
factor are so small that we need not go into any detail here.

Summarising up for the electric form factors, GEp

and GEn can be described on the same footing by our
constituent-quark-pion ansatz.

5.3 The magnetic form factors

For GMp data are measured up to Q2 = 30 (GeV/c)2,
therefore in this respect the situation is more favourable
here. On the other side, the interpretation of the magnetic
form factor within our model is hampered by the addi-
tional degree of freedom of the vector coupling of the spins
and the magnetic moments: While it is clear, that, e.g., the
two u-quarks in the proton carry the charge 2 ·2/3, the re-
sulting magnetic moment depends on the coupling of the
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Table 4. Parameters for the fits to the magnetic form factors. In all but fit 3 for GMn the normalisation is free. GMp

(Q2
max = 31.2 (GeV/c)2): Fit 1: Fit to all data, all parameters free. Fit 2: Fit to the data up to 10 (GeV/c)2 with all parameters

free. GMn (Q2
max = 10 (GeV/c)2): Fit 1: All parameters free. Fit 2: aπ−

1 kept fixed at 0.213 GeV/c as determined for GMp.
Fit 3: Normalisation kept fixed by adding a point with value 1.0000 ± 0.0001 at Q2 = 0.

Outer Inner Gπ

distribution distribution

Form factor aout
0 aout

1 ain
0 ain

1 aπ+/−
0 aπ+/−

1 Nd.o.f. χ2
d.o.f. χ2

total

(GeV/c)2 (GeV/c)2 GeV/c

GMp/µp

1 0.914(5) 0.818(8) −0.0049(1) 9.578(1.2) 0.110(7) 0.213(7) 75 0.887 66.5
2 0.917(6) 0.811(16) −0.0034(14) 13.57(6.0) 0.106(8) 0.210(8) 69 0.901 62.2

GMn/µn

1 1.019(14) 0.939(110) −0.112(16) 2.37(1.1) 0.219(47) 0.152(9) 14 0.629 8.8
2 1.363(3.14) 1.173(700) −0.511(3.17) 1.789(2.0) 0.140(46) 0.213(-) 15 0.946 14.9
3 1.189(1.34) 1.060(460) −0.309(1.38) 1.853(1.8) 0.120(40) 0.189(19) 15 0.837 12.6

quark spins. Furthermore, it is not clear what magnetic
moment one has to attribute to the constituent quarks.
The same uncertainty holds for the contribution of the
pion. Though it should predominantly be in a p-state, the
related magnetic moment is not known, since the pion is
highly off-mass shell and therefore its mass is not that of
the free pion. Furthermore, its contribution to the total
magnetic moment depends on the vector coupling. There-
fore, in the evaluation of the magnetic form factors with
the ansatz eqs. (16), (17) with eqs. (12), (13) we have to
take also the amplitudes aqN

0 and aπ
0 as free parameters.

On the other side, one might think that the parameters
aqN
1 , which describe the spatial distributions, might be

the same for GM and GE such that they can be taken
from there. One could, however, only profit from this for
the sufficiently well determined bare proton part, and here
only for the dominating term from the u-quarks. However,
it is not clear whether the dipole parameter, determined
at relatively low Q2, really should hold up to the highest
Q2 to which GMp has been measured. Furthermore, the
magnetic operator does not weight the distribution in the
same way as does the electric operator. Therefore, also the
parameters aqN

1 have to be taken as free.
Isospin symmetry would suggest that there are only

two different distributions, that for u- and d-quark in the
proton, and in the neutron, respectively, the inverted case.
In this case, including the pion there are only three dis-
tributions left and we try the ansatz

GM = aout
0 · Gout + ain

0 · Gin + aπ
0 · Gπ . (18)

Here, the nomenclature reminds on inner and outer
quarks, and we omit any discussion about the coupling
of their magnetic moments by just giving free amplitudes
aout,in
0 to their respective contributions to the magnetic

form factors which, again, are parametrised by the dipole
form eq. (12) with the free parameters aout,in

1 . In the same
way we allow for a free amplitude for the pion cloud. With

the a0 as free parameters, normalisation is not guaranteed.
We only mention in passing, that we have checked fits with
three dipoles; even in the case of GMp, however, up to the
highest Q2 two dipoles are sufficient.

The parameters from the fits are tabulated in table 4.
In the fits 1, all 6 parameters of the ansatz were free.
Again χ2 is comparable to the data evaluation with the
phenomenological ansatz. We show in the upper panels of
figs. 12 and 13 how well the data are described. Here, the
three terms are also shown separately.

For GMp we find a surprisingly large value for ain
1 ,

corresponding to a concentration of the respective distri-
bution in r-space near the origin (see subsect. 5.4 below),
however with very small amplitude. For the sake of com-
parison with GMn, we have repeated the fit with restrict-
ing the data to the Q2-range for which there are data
for both magnetic form factors (fit 2). We find such large
values for ain

1 (GMp) also from this restricted data base.
About 90% of the (positive) magnetic moment of the pro-
ton is carried by the outer distribution (aout

0 (GMp) ≈
0.91) and 10% by the pion cloud (aπ+

0 (GMp) ≈ 0.11).
Note, that the normalisation is violated by some 2%. This
should be acceptable in view of the quality of the data
at low Q2. The inner distribution contributes only about
−0.4% to the magnetic moment, while its contribution
to the form factor becomes comparable at large Q2. Fur-
ther, aout

1 (GMp) is 20% smaller than aup
1 (GEp), thus the

related distribution in r-space extends further out for the
magnetism than for the charge.

In fit 1 of GMn, the dominant contribution to the mag-
netic moment again comes from the outer distribution
(note that by referring to GMn/µn the signs are inverted).
The sign of the inner distribution again is negative, in this
case, however, its contribution to the magnetic moment is
about 11% and thus not negligible. The pion cloud con-
tributes a factor of two more to µn than to µp in this fit.
It has to be admitted, however, that in this fit the nor-
malisation is off by about 10%. In fact, the data do not
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Fig. 12. The magnetic form factor of the proton (parameters
from fit 1). Upper panel: Comparison of the measured data
with Gout + Gin + Gπ+ (total) and the three contributions
to the fit separately. Lower panel: The data points show the
measurements minus [Gout +Gin], compared to the pion cloud

aπ+

0 · Gπ+
. Note that here the data are shown as function of

log(Q2) in order to emphasise the low-Q2 region.

extend sufficiently far down in Q2 to let the normalisation
free in the fit, and the pion cloud is particularly sensi-
tive to the data at low Q2. Fit 2 shows the result of a fit
with aπ−

1 (GMn) fixed to aπ+

1 (GMp) = 0.213 GeV/c. The
fit now obeys normalisation to within a percent with the
amplitudes aout

0 and ain
0 having very large (correlated!) er-

rors. With fit 3 we went one step further by adding an
additional data point at Q2 = 0 in order to fix the nor-
malisation, while at the same time letting the parame-
ter aπ−

1 (GMn) free. There is some redistribution between
inner and outer distribution, but all changes of the pa-
rameters are within the errors. Thus, there is no prob-
lem with the normalisation of the data. We only men-
tion in passing that taking into account also the data
by Markowitz et al. [39] and by Bruins et al. [40] yield
aπ−
0 (GMn) between 0.09 and 0.12 and aπ−

1 (GMn) between
0.186 and 0.189 GeV/c.

It is beyond the scope of this analysis to try an expla-
nation of these findings.
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Fig. 13. Same as fig. 12, now for GMn; fit 3 in table 4.

5.4 The distributions in r-space

In fig. 14 we again show the distributions r2 · ρ(r) in the
Breit frame for the three standard form factors, now for
the model evaluation calculated with parameters given in
tables 3 and 4. In the proton, the contribution from the
inner distribution is practically invisible. This shows that,
to the degree of precision visible in this plot, the proton
form factors are describable by one dipole plus the con-
tribution from the π+, which builds a shoulder on the
distribution extending out beyond 2 fm. The magnetic
distribution in the neutron has an appreciable contribu-
tion from the inner distribution. Note that by evaluating
GMn/µn all signs are inverted such that, e.g., the contri-
bution from the π− comes in with a positive sign. It is
worth to mention, however, that it is the fit which yields
the positive sign for the contribution parametrised as form
factor of a 1p wave function.

To emphasise again the smaller contributions and thus
in particular the outer region, fig. 15 shows r2 · ρ(r) in
logarithmic scale. By construction, the distinct structure
at the edge of the distribution now consists of only one
bump, which, according to the model, is due to the pion
cloud. This evaluation shows that the oscillations in the
phenomenological analysis in sect. 4 are not significantly
determined by the data, they result from the particular
phenomenological ansatz used there for the separation



J. Friedrich and Th. Walcher: Form factors of the nucleon 621

-0.05

0

0.05

0.1

0.15

ρ (GEp )

standard dipole
 π+

       from p0

       from n0

          total

-0.05

0

0.05

0.1

0.15

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

 r / fm 

ρ (GMn )

standard dipole
 π-

     from outer
     from inner

          total

-0.05

0

0.05

0.1

0.15

ρ (GMp )

standard dipole
 π+

     from outer
     from inner

          total

Fig. 14. r2 ·ρ(r) in the Breit frame, calculated with parameters
given in tables 3 and 4 (GEp: fit 3, GMp: fit 2, GMn: fit 3).

between a “smooth” and a “bump” contribution to the
form factor. The shoulders in all three standard form fac-
tors, however, emerge in both evaluations, and we judge
them as being an unambiguous result from the data.

In fig. 16 we show the polarisation contributions to the
electric form factor of the proton in an enlarged scale for a
closer comparison with the situation in the neutron which
is shown in fig. 17. The (tiny) neutron contribution to the
polarisation part of the proton, bp · n0, is situated in the
inner region. The superposition of −bp · p0, i.e. from the
reduction of p0, and bp ·π+ yields just the two lobes which
were also seen in the phenomenological analysis and which
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Fig. 15. Same as fig. 14, now in logarithmic scale.

are emphasised in the logarithmic representation in fig. 8.
The small shift in the zero compared to fig. 8 is due to
the difference in what is regarded as the smooth part of
the form factor. In fig. 15 the negative lobe of the “bump”
in fig. 8 in is not visible since −bp · p0 is absorbed in the
contribution from p0 as a whole.

The charge distribution of the neutron, see fig. 17, is
dominated by the smooth polarisation oscillation, i.e. by
the positive lobe bn · p0 and the negative lobe from the
π−. These two contributions add up to the same form as
the polarisation in the proton, but with opposite sign. Su-
perimposed is now the charge distribution from the neu-
tron, (1−bn) ·n0, which modifies the smooth oscillation in
a characteristic way. In particular it reduces the positive
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Fig. 16. The contribution of the polarisation term to r2 · ρ(r)
for the proton (in the Breit frame).
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Fig. 17. r2 · ρ(r) in the neutron (in the Breit frame). The
contributions from the bare neutron and proton and from the
pion are shown separately. Upper panel: fit 2, lower panel: fit 3
in table 3.

lobe from bn ·p0 around 0.5 fm, possibly leading to a region
with zero net charge. The details depend on differences in
the ansatz, the present data do not contain sufficient infor-
mation to discriminate between the different solutions. It
is, however, gratifying to note thatthis feature is present

throughout the different approaches in this paper: It is
also visible in fig. 2 and, particularly clearly, in the lowest
panel of fig. 7.

6 Conclusion

It is found as a common feature of all four nucleon form
factors that they exhibit a very similar structure at small
momentum transfer, which is related with some structure
in r-space at large r around 2 fm. Such finding asks for
a common explanation. We propose to interpret this as
resulting from a pion cloud around the bare nucleon. This
is actually an old idea accounting for the chiral symme-
try in quark bag models of the nucleon and has been used
for many years [49,50]. The phenomenologically successful
“cloudy bag model” (see, e.g., [51] and references therein)
was recently used to describe the form factors of the nu-
cleon [52]. However, this description was still based on the
old data base and did not look for the effect of the pion
cloud in the form factor at low Q2.

Also the other ingredient of our polarisation model has
a deeper theoretical basis. The division between the bare
proton and neutron contributions into separate contribu-
tions from up and down quarks is not only suggested by
the naive constituent quark model but is well justified
through calculations in quenched lattice QCD [53,54].

A fit of the data with the ansatz of a p-wave for the
pion yields probabilities for the dissociation of the nucle-
ons into their counterpart and a charged pion of 7 to 20%,
details being dependent on the peculiarities of the ansatz.
One could compare these probabilities with similar results
from high energy experiments. But without a more thor-
ough theoretical discussion such a comparison is not very
meaningful since our polarisation model is rather crude.
It is evident that next-to-leading order contributions as
the two pion continuum or the pion-Delta component in
the nucleon wave function have to be considered. In a
dispersion-theoretical analysis such contributions can be
included naturally and, in fact, have been in the past [55].
Such analyses will be pursued again in the frame work of
chiral dynamics particularly suited to take higher order
effects to the pion cloud into account [56].

From the experimental point of view our exciting result
shows that further studies at momentum transfers squared
Q2 � 1 (GeV/c)2 down to the lowest reachable values are
much needed with increased precision.

We have parametrised the smooth part of the form
factors by the superposition of dipoles, which lend them-
selves to an interpretation in terms of the distribution of
constituent quarks. Data at high momentum transfers are
needed to check this model assumption and constrain the
distribution.

The authors are indebted to M. Seimetz and D. Glazier for
making available their GEn-measurements prior to publication.
A careful reading of the manuscript by Dr U. Müller is grate-
fully acknowledged. This work was supported by the state of
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